Match A4M Logo
Log in  \/ 
A4M Logo

UPM ( leads the forest-based bioindustry into a sustainable and innovation-driven future. UPM’s innovations focus on the efficient and responsible use of recyclable and renewable biomass. UPM’s new businesses Biocomposites ( and Biochemicals ( develop new bio-based materials which open new sustainable and responsible business opportunities.

Creating value and replacing fossil-based raw materials

UPM Biochemicals’ offering is divided into four product categories: chemical building blocks, lignin products, biofibrils and biomedical products.

Bio-based chemical building blocks are used for example to substitute oil-based chemicals in plastic production. Wood-based lignin can be used to manufacture bio-based resins replacing fossil-based resins for example in plywood production.

Biofibrils are cellulose-based micro- and nanofibril products that can be used for shaping and reinforcing different materials. They can also be used in new biomedical applications.

GrowDex® an innovative matrix for 3D cell culturing

UPM’s GrowDex® ( ), is an award-winning innovation with great future potential in medical research and other applications. It is a proprietary hydrogel for three dimensional (3D) cell culturing. 3D cell culture is an in vitro technology for advanced cell culture applications. They mimic more closely natural tissues and organs than cells grown in two-dimensional environment (2D). 3D cell culture techniques enable e.g. development of cell based drug and chemical tests and discovery of models and treatment for serious diseases.

The wood cellulose-based nanofibril hydrogel GrowDex® is used for research of different sicknesses, such as cancer. In a recent project researchers investigated how cancer cells from solid tumors grow as a three-dimensional culture in GrowDex® and how they respond to different drugs.

It has turned out that cells which have been cultured in this type of 3D environment can show different drug responses than those that have been cultured in a traditional 2D environment. With some drugs, the cancer cells are sensitive in one or the other condition, not both. In other words, a certain drug only kills cancer cells in a 2D environment but not in the natural 3D environment. The use of more natural, 3D in vitro technologies enables more effective development of cancer and other drugs and even personalized medicine applications.

UPM’s GrowDex® has been recognized as a significant innovation with great future potential. It was awarded the Chemical Industry Federation of Finland innovation prize in 2016. The members of the award winning GrowDex® team come from UPM and the University of Helsinki. The award given to the innovation is also a recognition to UPM for boldly moving into new areas of research and development.

Innovative fossil-free biomaterials and products can end the fossil-based era and help to decarbonize the EU

Lignin, nanocellulose, cross laminated timber, biochemicals, biofuels, wood-based packaging, forest fibre textiles and countless materials and products of biological origin, particularly from forests, can replace a range of fossil and non-renewable materials and products with enhanced energy efficiency or environmental performance. To assume that these so-called biobased materials and products will trigger a paradigm shift is not an overestimate. A bioeconomy age lies ahead.


Read the whole article here


For over a decade, Centexbel, the Belgian research centre for textiles and plastics, is highly involved in the development and implementation of biopolymer fibres and textiles.  Drop-in biopolymers such as Bio-PE or Bio-PET intrinsically have the same properties as their oil-based counterparts and can be implemented with limited technological developments.  

Therefore, our focus lies on new biopolymer types since they offer a real challenge to develop appropriate processing conditions and additive selection and to maximise the specific properties offered by these new polymers such as PLA (PolyLacticAcid), PHA’s (PolyHydroxyAlkanoates), PHB (PolyHydroxyButerate), PBS (PolyButyleneSuccinate), TPS (ThermoPlastic Starches) or PEF (PolyEthyleneFuranoate). At present, PLA is the most economic biopolymer and available in the highest amounts. The majority of the research projects are directed to the use of this biopolymer in textile applications. This is illustrated by 3 European projects, representing our past and present research activities.


“BIOAGROTEX” was one of the first large-scale projects on biopolymers, coordinated by Centexbel. The project aimed at developing fully biobased agrotextiles, exploiting the specific properties of biopolymers such as PLA to be composted after its normal lifetime. To those agrotextiles requiring a guaranteed lifetime of several years, but preferentially have to be composted after reaching its end-of-life, this polymer can offer an attractive solution. In the project we succeeded in defining appropriate grades and processing conditions for production of fibres, monofilaments and tapes, which fulfilled the requirements of the specific applications.

Based on the positive results, several industrial partners launched specific new biobased Agrotextiles into the market; amongst others:
•    DURACOVER® – Bonar Technical fabrics: Woven groundcovers from PLA tapes.
•    HORTAFLEX® –  DS Textiles: needlefelt groundcovers from PLA fibre
•    FILBIO®PLA –Texinov:  Knitted insect screens from PLA monofil

The products have been successfully implemented in the market and a market growth is expected in those countries where public procurement rules define the use of biodegradable or more ecologic, sustainable products, especially in the case of large public projects (railways, highways, public green space, … ).


Example: DURACOVER  from Bonar Technical Fabrics from Bonar Technical Fabrics



Example: DURACOVERExample: HORTAFLEX® from DS Textiles



Example: FILBIO®PLA from Texinov



In a second more recent project, the development of biobased textile products is continued but instead of focussing on biodegradable properties, more durable applications are envisaged. The development looks into the possibilities of spinning yarns from PLA staple fibres, in combination with other natural fibres such as wool or cotton. The yarns will be further processed into fabrics for a variety of high-end clothing applications, including in casual menswear and ladieswear, protective clothing and workwear. Via this route 100% biobased articles will also be generated, avoiding the use of oil-based polyester fibres. It is obvious that in these applications durability and comfort aspects are of a much higher importance than biodegradability.    
This H2020 “Fast-Track-To-Innovation” project, coordinated by Aimplas, joins the expertise of 3 industrial partners representing the different production steps: fibre extrusion, yarn spinning, weaving and confection and is supported by 2 research institutes. Centexbel supports the development of functionalised formulations and the fibre extrusion processes in close collaboration with DS Fibres who has also participated in the Bioagrotex project.
The project was started just recently. The first industrial products into the market are expected in 2019. Further information is provided by the project website:



Spinning and weaving PLA/wool and PLA/Cotton yarns.


The objective of the third example of European projects, BIO4SELF, is to develop a further high-end and durable application of PLA materials. In this project, coordinated by Centexbel, a consortium of 16 research centres and industrial partners, representing the complete value chain, have set themselves the task to improve the PLA filament production to allow the production of novel fully biobased composites using the self-reinforcement technology.
To achieve this goal, high performance nanofibrillar PLA fibres will be developed, with a high tenacity and a higher melting temperature, that can act as reinforcement fibre in the composite. This reinforcement fibre itself is additionally reinforced with a bio-based thermotropic liquid crystalline polymer nanofibrils (bio-LCP) to reach the requested high mechanical properties.
For the matrix, lower melting PLA fibres will be developed and combined with the high melting reinforcement fibres to create hybrid yarns and preforms. These hybrid PLA preforms will be made with different fibre architectures, e.g. chips with short fibres in random orientations, and fabrics with long fibres in controlled orientations.
These intermediates will be further processed by injection moulding or compression moulding routes, to a range of high-level composite products.


Self-reinforced composite obtained by combining a low and high melting PLA grade.

A further goal is to develop self-functionalization of the composite materials, aiming to induce inherent self-cleaning (via photocatalytic fibres), self-healing (via tailored microcapsules) and self-sensing (via deformation detecting fibres) properties. Prototype parts for automotive and home appliances will be developed with the novel materials to demonstrate the broad application potential of the biobased self-reinforced materials.


BIO4SELF requires innovation all along the value chain.

This project example clearly shows that biopolymers are no longer solely used and developed for biodegradable and biobased purposes, but for the highest application levels and that they have the potential to outperform standard oil-based products in some applications.

For further information and updates on the BIO4SELF project, feel free to sign up for the project newsletter at the website:


The projects mentioned above, are only a few examples of the research projects performed at Centexbel in relation to the biobased economy.  Other projects are dealing with alternative biopolymers such as TPS, PBS or PHA. Moreover, our projects not only address extrusion applications but are also evaluating alternative biobased formulations for coating and finishing processes.
Although the introduction of biobased polymers and chemicals in the textile industry is still taking place on a very small scale, we are convinced that this will gradually change in the near future. The ongoing research will surely result in new “eye-catcher” applications within a few years that will boost the implementation of biobased textiles and support the global change towards the biobased economy.


Luc Ruys, Centexbel, Technologypark 7, 9052 Gent, Belgium

One of the most important drivers to electrify traffic and transportation  are  the  zero emission  levels  –  at  least locally  –  of  CO2,  NOx  and  particles.  Another  significant driver  is  the  energy  efficiency  of  electric  vehicle  which is  substantially  better  than  in  conventional  combustion engine powered vehicles. According to some studies the total efficiency of  electric  vehicles  from  well  to  wheel  is three times as good as the total efficiency of  petrol driven vehicles.

The  European  and  national  emission  reduction  target levels for traffic have been set for 2020 and beyond. It is quite obvious that the targets cannot be met without reducing  remarkably  the  use  of  fossil  fuels,  and  shifting  to electric power in transportation and logistics. Similar mindset was also in the background in 2009-2010 when the studies about the meaning and importance of electric cars and electric mobility for Finnish society in the years to come were carried out. The main result of these studies was the identification of business possibilities for Finnish industry in the fields of mobile machinery electrification, vehicle software, charging technology, automotive industry components and electric mobility infrastructure.

All these significant business potentials gave the Funding Agency for Innovation Tekes a good motivation to launch a specific programme in the field of electric mobility in 2011.

The main target of the programme was to create an  electric mobility  ecosystem, that  could  generate  new knowledge and competence in EV related technologies and services. From the very beginning all the development was focused on international business opportunities. The programme wanted to establish contacts also to international programmes and important business actors.The main approach in the EVE programme was to emphasize piloting, testing and demonstration projects.

As firect results of EVE programme roughly ten new start-ups have been founded and existing companies have increased remarkably their business volume in international markets. Two good examples of the startups are Virta Ltd. and Linkker Oy. Both companies were founded during the programme and have already created business outside Finland.  Other good examples are Visedo and Plugit Finland, who both have already created large business on EV related technologies and services.

Check out the programme's final report here










MATCH STGs Seminar & Workshop

15.2.2017, Radisson Park Inn Hotel,
Martelarenlaan 36, Leuven, Belgium



Kick-Off-Meeting of Representatives of the A4M Sector Technical Groups (STGs)

Materials are essential for most of the industrial sectors in Europe. However, they are not of value without their functions and their functions are related to the manufacturing of components and final products. Beside the combination of materials – manufacturing - function it is important to discuss also the relation to Information and Communimage001ication Technologies (ICT) that will be used more and more in the manufacturing of products (industry 4.0), and materials for ICT are crucial to allow cheaper and more effective manufacturing (e.g. 3D printing) in Europe that is competitive to other countries and continents.
The Alliance for Materials (A4M), initiated by a number of ETP’s that have a strong materials agenda and now having as partner also the two important European materials representing societies (Federation of European Materials Societies, FEMS and the European Materials Research Society, E-MRS) will contribute to create the conditions for an effective integration of stakeholders, views and resources in the field of Materials R&D at the EU level.
The aim to create Sector Technical Groups (STG) is to serve as a reference point (“comprehensive expert group”) and transmission chain for Materials R&D issues in the respective sector chosen in a long term. The Horizon 2020 project MATCH is initiator of this new activity in the following fields: Energy, Transport, Construction, Health and Creative Industry, and should contribute to the definition and promotion of proper R&I topic priorities for the respective sectors.
By this they should also identify materials issues that concern the whole value chain approach of MATCH as e.g. problems with supply chains, challenges in maintaining resource & environment or societal challenges, that may hinder or even prevent possible investments into a technology and reduce the chance of marketable innovations.


pdf image


The Match Observatory is a strategic vigilance system aimed at identifying and following the adoption by market of the key research and technology developments in materials required to meet the challenges of the 21st century across major industrial sectors. For this we will follow the evolution of market drivers, market value of the innovations and signals of real market acceptance of the innovations, this is basically TRL7, 8 and 9.


For the implementation of the Observatory tree main activities were defined and planned.

  • Planning of the MATCH Observatory
  • Collection of information
  • Dissemination of information

Planning of the MATCH Observatory

During this phase the main activities carried out were definition of KITs (Key Intelligence Topics) and identification of sources of information.

After a review of the strategic literature about the topic, i.e. EuMat Research Agenda or ETPs documents and a number of questionnaire-based phone interviews with EU national and regional actors on materials science a ranked list of topics where the two more voted topics were selected as primary KITs for the Observatory on four of the sectors. For the Health sectors the input of the experts induced us to completely change our selection into 3 new KITs.

  • Construction: 1) Advanced Insulation Materials, 2) Materials for Thermal / Electricity Generation and Storage
  • Energy: 1) Materials for Energy Storage, 2) Materials for High Temperatures
  • Transport: 1) Integration of Materials, 2) Lightweight Metal Materials
  • Creative Industries: 1) Functionalisation of Textile Materials, 2)Integration of Materials
  • Health: 1) Implantable Materials, 2) Tissue Engineering, 3) Diagnostics (and Therapeutics)

The preliminary identification of sources has been made by different means, such as input from partners, input from experts interviews and searches on directories and general search engines. The result is a preliminary list of sources. Each of them has been categorized according to its coverage, as they can be specific for one of the five relevant sectors, cover some of them or have a general interest in the field of materials. This selection will be updated as new sources become available during the project lifetime.

Collection of information

On September 2015 and according to the distribution agreed in the surveillance plan, partners started collecting information internally in order to fine tuning their respective sources and tools. The information is constantly gathered using a semi-automatic approach that combines the use of internet monitoring agents with more precise selection criteria by human means.

Several online and face to face meetings have been carried out to coordinate approaches and formats concerning the upload of information on the web dissemination tool.

Dissemination of information

As defined in WP3 three main methods have been developed to disseminate information collected by the Observatory.


  • Deliverable D.4.3. RSS (Really Simple Syndication) Channels, available for thedifferent categoriescovered by the Observatory.

  • Deliverable D.4.4. Half-yearlyreports that summarize and connect the most relevant pieces of information using three main groups: market value related news, actors’ movements (company investments, launch of new products, etc.) and research projects and programs. The first of these reports was produced in June 2016 and can be accessed on the Reports page

Additionally a twitter account @InfoObservatory has been created to disseminate Observatory´s posts.

Next steps

The Match Observatory KITs will be updated during the project life taking into account the results obtained in other work packages with the aim to have a broad and accurate range of key intelligent topics, which can contribute to a better understanding about what is to come in the field of advance materials. MATCH observatory will receive inputs especially from WP6 (Roadmap Foresight and roadmap). The sustainability of MATCH Observatory will be studied during 2017 before the MATCH project is over.

RESYNTEX, a research projected funded by the EU’s HORIZON 2020 Programme, aims to create a new circular economy concept for the textile and chemical industries. Through an innovative recycling approach and industrial symbiosis, RESYNTEX, started in June 2015, will transform textile waste into secondary raw materials, creating circularity and reducing environmental impact. RESYNTEX has 20 project partners from across 10 different EU member states, including industrial associations, businesses, SMEs and research institutes.


On 14 September 2016, the European Chemical Industry Council (Cefic) and the European Apparel and Textile Confederation (EURATEX) organized the Experts Workshop on Textile Waste Situation & Textile Waste-to-Chemicals Scenarios. The event, held in Brussels, brought together European textile waste and chemical industry experts to discuss the current situation and trends of textile waste collection and valorization in Europe, and to validate textile waste-to-chemicals symbiosis scenarios developed by the RESYNTEX project.

During the workshop, experts alerted that, currently, many of materials contained in products are still rejected as waste after use, and much of the waste is landfilled or incinerated with high environmental impact. Not enough post-consumer textile waste is separately collected in Europe and a significant residual part of the non-reusable waste does not get recycled. The purpose of RESYNTEX is to change that reality, designing a complete value chain from textile waste collection to new feedstock for chemicals and textiles. The project aims to enable traceability of waste using data aggregation, to develop innovative business models for the chemical and textile industries, to demonstrate a complete reprocessing line for basic textile components, besides increasing public awareness of textile waste and social involvement. Participants highlighted that citizens should receive more information in order to be involved in a new way of thinking and behaving towards textile waste, with focus on sustainability.

An overview of the textile waste situation in Europe was provided by EURATEX and Oakdene Hollins. First, textile waste for the purposes of RESYNTEX is defined as “non-hazardous textile waste and is focused on residual waste currently sent for landfill or incineration, after all re-usable and easily recyclable fractions have been sorted out”, which is accessible to the project from different textile waste streams: production waste, post-use industrial/professional and post-consumer textile waste. According to the Eurostat waste generation data; there is approximately 1 million tonnes of textile waste from households in the 28 countries of the EU collected separately per year. However, collection rates vary extremely widely across Europe, with rates of 30-50% in Western and Northern Europe to virtually 0% in some Eastern European countries.

A first estimate provided by Oakdene Hollins, based on an extrapolation of data provided by 9 textile sorters in different EU countries, shows a total volume of 80,000 tonnes of residual waste generated by the EU28 sorters per year. Out from that volume and the composition of the residual material, which consists of 60% of textile fibres, the total volume of textiles that is accessible to RESYNTEX from that waste stream is 50,000 tonnes per year. More detailed information on the composition of such waste will be evaluated during the project between the partners and contacts to regional textile sorters.

A panorama of the French experience on textile waste and recycling was provided by Eco TLC, a non-for-profit private company directed by a board of industrials that aims to tend towards 100% reuse and recycling for used clothing, household linen and footwear (TLC in French). Every company that introduces clothing, household linen, and footwear items on the French market to sell it under their own brands, must either set its own internal collecting and recycling program or pay a contribution to Eco TLC (accredited by the French Public Authorities to manage the sector’s waste) to provide it for them. The funds collected support research and development (R&D) projects that are selected by a scientific committee to find news outlet and solutions to recycle used TLC, and are used to publicize campaigns organized by local authorities to change consumers waste sorting habits. Every year, 600,000 tonnes of TLC are placed on the French market; however, only 32.5 % of used TLC is collected for reuse or recycling. TLC reported that up to 7% of the collected post-consumer textile quantity is currently incinerated, partly in cement production, or even landfilled.

The Netherlands has a goal of increasing the collection of post-consumer textiles by 50% by 2020. Nowadays, the waste collection is about 90.000 tonnes per year. The low quality materials and non-reusable waste are the main challenges to the waste textile usage. ECAP (LIFE) and REMO were mentioned by Alcon Advies/ Texperium as good examples of projects on textile recycling initiatives. Belgium has an exceptionally high rate of separate textile waste collection due to a dense network of containers and other collection options across the country. The new report from COBEREC shows that, in 2015, 120,000 tonnes of old clothes were recycled in Belgium, 500 million pieces. Lower quality textiles are reused as rags (20%), or their fibers are recycled (17%). And about 8% of textile post-consumer waste is not reusable. An overview of Czech Republic textile waste scenario was provided by INOTEX Ltd: Only 3,000 tonnes of textile waste is separately collected per year and only 3 % of all textile waste seems to be recycled at present.

Cefic described existing polymer recycling business practices in other segments and summarized existing initiatives, pilots, commercial activities and other major research projects in the field of textile polymer recycling. For the RESYNTEX relevant types of fibers in the textile waste, Cefic discussed the relevant market environment. Potential business models suitable for such textile/chemical symbiosis were discussed by the workshop participants, e.g. scenarios describing a regional delocalized sorting and pretreatment of the textile waste and transportation to central chemical conversion plants to achieve economy-of-scale.

The RESYNTEX expert workshop provided an excellent platform to exchange valuable information in between the participants, challenge and validate Textile Waste-to-Chemicals Scenarios as Circular Economy concept. The discussions and conclusions highlighted the enormous value such future symbiosis could create for both sustainability and the economic benefits of the sectors involved and the society as a whole.

Already in 2004 Stefan Böschen, Armin Reller and Jens Soentgen published their story-of-stuff-approach [1]. The authors show that the first foundations for today's Circular Economy were laid in chemistry in the second half of the twentieth century, with the production of new synthetic materials in unprecedented quantities. With this development away from the natural substances the by-production of contaminants also increased and their regulation became soon necessary. Science, the government and industry have developed a set of rules that has been made more and more rigorous by various major accidents in industry and by the emergence of environmental movements. REACH, the European Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals which entered into force in 2007 and replaced the former legislative framework for chemicals in the EU, is the answer in view of the ecological and societal risks, which might be related with such substances.


Figure 1:  Story of Stuff-Approach (Böschen et al. [1])


A “material history” (Stuff approach see figure 1) going along with a substance should not only investigate it from its source as e.g. a raw material through its manufacturing processes up to its user and finally its end. But it should also be viewed in the context of its cultural, political and economic influences. Among other things, the life-cycle analysis of substances or products is mentioned, but "soft factors" should be included as well as the consumption behaviour of the various societies and their handling of products to which they are exposed daily. The political and legal aspects are also important, and one should not only refer to the own country, but also include in models and assessments the countries from which the raw materials and semi-finished products originate or in which the products are supplied. It is important to have a holistic understanding of the links, not only on a political or economic level, but also for the "average man in the street", the consumer who uses these products and either throws them away or collects them for recycling. This type of "Circular Economy, Ecology and Society" can not be conceived as a short-lived instrument, but must be well planned with a view of longer periods.

In 2015 the European Commission published a Communication from The Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on “Closing the loop - An EU action plan for the Circular Economy” by which “The transition to a more circular economy, where the value of products, materials and resources is maintained in the economy for as long as possible, and the generation of waste is minimised, represents an essential contribution to the EU's efforts to develop a sustainable, low carbon, resource efficient and competitive economy. Such transition is the opportunity to transform our economy and generate new and sustainable competitive advantages for Europe starting at the very beginning of a product's life. Both the design phase and production processes have an impact on sourcing, resource use and waste generation throughout a product's life”. Various actions are mentioned which will run for the next few years at national and European level, for example: [2]

•    Ecodesign work plan 2015-2017 and request to European standardisation organisations to develop standards on material efficiency for setting future Ecodesign requirements on durability, reparability and recyclability of products
•    Establishing an open, pan-European network of technological infrastructures for SMEs to integrate advanced manufacturing technologies into their production processes
•    Further development of the EU raw materials information system

And regarding Critical raw materials:

•    Report on critical raw materials and the circular economy
•    Improve exchange of information between manufacturers and recyclers on electronic products
•    European standards for material-efficient recycling of electronic waste, waste batteries and other relevant complex end-of-life products
•    Sharing best practices for the recovery of critical raw materials from mining waste and landfills

In Germany the “closed loop recycling” has a long tradition based on the 1994 Act for Promoting Closed Substance Cycle Waste Management and Ensuring Environmentally Compatible Waste Disposal (KrWG) which was amended in February 2012 and entered into force in June 2012. It is based on a five-step waste hierarchy  including waste avoidance; re-use; recycling; energy recovery; and disposal [3].

In October this year the Friedrich Ebert Foundation in Germany published a report from Henning Wilts  on “Germany On The Road To A Circular Economy?” [4] The author questions whether the production of waste really represents a necessary evil of our mode of production or if a world without or less waste becomes possible? And he mentions alternative approaches which change only by name “such as the circular economy, zero waste, closed-cycle, resource efficiency, waste avoidance, reuse, and recycling” that means ways to become aware of the problems that goes along with the massive use of materials – also like water, food or materials to produce energy -  and by this the disappearance of resources if we do not care for the waste and its potential to re-use the materials that it contains. He states that a “world without waste can only be achieved with a holistic concept… taking into account approaches such as avoidance, reuse and recycling of both materials and energy at every stage of the product life cycle to ensure environmental product design from the outset – with recycling at the end”. I do not think that a “world without waste” is a realistic approach, however to reduce and re-use materials wherever possible would be useful for our future society. The idea to change from a linear economy to a “close cycles system” may help already when discussing an idea for new materials, new products as this idea needs already to have the end of the cycle in mind and help to avoid “pillar thinking” when we discuss materials issue in sharply defined areas like education – research – development – processing and finishing of a product with not much emphasis on the links between each step towards the demand of the end-users. Furthermore, we leave these end users alone with the decision what how to deal with the product after its lifetime.

The Ellen MacArthur Foundation, very active in this field, presents a definition for Circular Economy indicating  “that it is restorative and regenerative by design, and which aims to keep products, components and materials at their highest utility and value at all times, distinguishing between technical and biological cycles”[5] . This new approach is based among others on two facts:

1.    A change in the way of using natural resources for energy. Politics moved away from non-renewable energy like oil or coal which is linked to global and worldwide concerns about their consumption and all kinds of pollution, and also from nuclear energy related to problems with the hazard waste and possible high impact incidents for the society like the Fukushima disaster in 2011 towards a politics of renewable energy and a better handling to minimize the energy consumption

2.    A change in the way of using natural materials resources. Due to the fact that Europe is poor in raw materials resources however a leading economy for innovative and emerging products necessary for our economic growth and to attack societal problems, the economy is very much depending on those countries which have the necessary resources. In the early years of the 21st century important raw materials were not available or only at high prices and with risks of supply. Therefore, the European Commission launched the Raw Materials Initiative in 2008 which “set out a strategy for tackling the issue of access to raw materials in the EU by a strategy of three pillars which aim to ensure [6] : fair and sustainable supply of raw materials from global markets and within the EU and a better resource efficiency and supply of secondary raw materials through recycling”.

Janez Potocnik, European Commissioner for the Environment states in his foreword to the Report “Towards a Circular Economy” from 2013 [7]  that  “the European Commission has chosen to respond to these challenges by moving to a more restorative economic system that drives substantial and lasting improvements of our resource productivity. It is our choice how, and how fast, we want to manage this inevitable transition.”

If one is concerned with the Circular Economy within the framework of the materials, it is striking that the topic becomes more and more important since the mid of the 20th century, when more and more materials/elements were necessary to build up the requested functions of the components and especially by the beginning of the 21st century, when scarcity of raw materials - and especially the rare earth metals - have become increasingly important (see figure 2 and 3). As well as some other elements they are vital for innovative products in industrial sectors such as communication, energy and transportation. Europe, owning very few metal ores, is fully dependent on importing metals from other countries. This situation poses a substantial risk of possible supply disruptions of raw and semi-processed materials and components. A problem of awareness concerning supply shortages are especially concern minerals where specific legal requirements have to be met (Dodd Frank legislation in the US, other regulations in Europe).


Figure 2: Intensively used Elements and the drivers behind (Adapted after Achzet / Reller, 2011)

It is often difficult to substitute these materials due to their special functions when processed towards components, which can not simply be exchanged by other elements or components which are more easily to access. The MATCH Project under HORIZON 2020 evaluated the materials and their applications in more than 1000 R&D projects (see Figure 3) and it could be shown that smart materials inclusive coatings and surface structuring are used the most and that applications like energy, followed by manufacturing and transport are the most important fields of application.


Figure 3: Materials research and development and its application (Data from the Project MATCH, funded by HORIZON 2020 under grant agreement n°: 646031)

Frequently, industries underestimate the challenges with regard to availability & cost and of functions of substitute materials for mass production. Besides availability, the question of “deployability” has to be raised: it is not only important what is theoretically available, but also what can be used under legislation and Corporate Social Responsibility (CSR) aspects. CSR is today relevant for European companies, also from an economical point of view: image and reputation depend amongst others on a company’s sourcing policies and its control of impact on the upstream side of the value chain. Further to possible disruptions, the quality of bought materials is also an important aspect. Imports from countries with different or less standards and dispersed supply chains put hurdles on quality control; thus, monitoring systems have to be implemented to ensure a certain quality standard.

Therefore, systems such as "closing the loop" are not only interesting from an ecological and energy perspective, but also from the procurement and utilization of critical raw materials and the control of information about their composition in view of their recycling and re-use. Although a metal’s purity can be fully re-established with proper smelting and refining – e.g. gold or copper on the market has often been re-cycled several times – there are other metals or element compositions which are difficult or too expensive to recycle or can only be down-cycled, i.e. the quality is reduced and the range of applications for which they can be used is very limited. Further on recycled products often bear the reputation of being of lower quality and posing the risk of product failure.

Better information for designers, manufacturers and consumers would be important to help in encouraging a design towards better recycling, improve the recycling rate and steadily inform about new recycling methods to promote a better handling of materials during the whole value chain. As the development of new materials can take up to 10 or 15 years, it would be necessary to discuss the availability of certain materials already during the development and demonstrator phase, i.e. that also universities and Research Technology Organisations, RTO’s should have checklists for new developments. Based on the experience of the author this is not yet the case at many of the materials departments.


Figure 4: 20 Critical Elements and the World primary supply [8]

Similar to the problem of legislation and price insecurities, end-of-life issues are often not considered. Short end-of-life products like electronics with only 2 to 3 years of useful life, consumer goods like small household machines or larger ones like washing machines with about 5 to 12 years and cars with max. about 9 to 10 years become an important “urban mine” for technology metals such as precious and special metals which can be further exploited through comprehensive recycling. The circular economy strategy of the European Union can become an important trigger for improvements in this aspect. Recycling and remanufacturing should be considered early in the development and design phase to ensure alignment with current and future legislation, probable additional costs and enhance sustainability.

A compositional characterisation of the "urban mine" is a necessary prerequisite to optimise the recovery of critical raw materials. However, existing data are scattered amongst a variety of institutions including government agencies, geological surveys, universities, NGOs and industry. In addition, where data relates to the composition of products and waste fractions, different sampling, sample preparation and chemical analysis approaches may have been applied, which makes it challenging to aggregate and compare data. In the EU Horizon 2020 project "Prospecting Secondary raw materials from the Urban mine and Mining wastes" (ProSUM) [9]  a comprehensive, standardised and harmonised inventory of critical raw materials stocks and flows is currently constructed at national and regional levels across Europe.

The Journal of Industrial Ecology from 2006 has published an article from Zengwei Yuan, Jun Bi, and Yuichi Moriguichi on The Circular Economy, a new development strategy in China in which China’s transformation from a planned economy to a market-based one and open to foreign trade and investment was the important step towards a revived economy. This growth highlights also another side of the coin by having a resource depletion and environmental negligence and by this the seriousness of the situation for the society.  Z. Yuan mentioned in this article that “recent research has pointed out that growth of the gross domestic product (GDP) in China has significantly reduced the opportunities of future generations to enjoy natural and environmental resources”.

There are further reports like that from the The European Environment Agency [7] which are discussing the current situation of production and consumption and especially the end of the utility period of goods and their recycling or re-use. One of the important factors to minimize or optimize the use of materials and other natural resources is related to the so called Eco-design to allow “a longer life, enabling upgrading, reuse, refurbishment and remanufacture and sustainable and minimal use of resources and enabling high-quality recycling of materials at the end of a product's life”.  They also propose to improve the recycling processes so to “avoiding down-cycling (converting waste materials or products into new materials or products of lesser quality) and mixing and contaminating materials”. This could help a European economy by “industrial symbiosis (collaboration between companies whereby the wastes or by-products of one become a resource for another)” . The Circular Economy can have a positive or negative impact on the society. A more closed production chain could create new jobs in Europe, but the question is whether the industry will be able to switch to product service systems for further low-paid jobs. It is also necessary to ask whether and how this conversion can be paid for, since not everything will have to be passed on to the industry. The citizen, who wants a more environmentally friendly future, will have to take part in this task. But the question arises as to which sections of society can do this, and how we can avoid to discriminate between certain social groups.


Figure 5: Circular Economy and Source efficiency [10]

Overall, it is important to intensify the research efforts (also an aim in the EAA report of 2016), in the field of materials and in cooperation with other faculties such as industrial design, but also (macro)-economics, social science and environmental sciences. It will be important to gather more fact-based knowledge and evaluated information and to make this available in databases to scientists, industry and politics. By doing so models and action sequences can be made transparent and based on common facts. Here, it still has a lot of demand and ongoing research necessary.

Author: Margarethe Hofmann-Amtenbrink

Dr.-Ing. Margarethe Hofmann-Amtenbrink is owner and CEO of MatSearch Consulting Hofmann, Pully Switzerland, CEO of the ESM Foundation, Zurich, Switzerland and FEMS Immediate Past President.


[1] Stefan Böschen, Armin Reller und Jens Soentgen, "Stoffgeschichten – eine neue Perspektive für transdisziplinäre Umweltforschung“, GAIA 13 (2004) no. 1, pp 19-25
[2] For more information please check
[10] The economy: resource efficient, green and circular, The European Environment Agency, Published 02 Jun 2014, Last modified 31 Aug 2016, 03:14 PM: